跳转至

Madoka and The Best University

原题链接

题意

给你一个整数 \(n\),求解 \(\sum_{a+b+c=n}\operatorname{lcm}(c,\gcd(a,b))\)

⭐rating: 2200


分析

枚举 \(t=\gcd(a,b)\),因此原式等于 \(\sum\operatorname{lcm}(c,t)\sum_{a+b=n-c}[\gcd(a,b)=t]\)

如果 \(\gcd(a,b)=t\),那么 \(\dfrac{a}{t},\dfrac{b}{t}\) 互质。并且 \(\gcd(a,b)=\gcd(a,a+b)=\gcd(a,n-c)\),即求满足 \(\dfrac{a}{t},\dfrac{n-c}{t}\) 互质的个数,因为 \(n-c=a+b>a\),所以就是求 \(\phi(\dfrac{n-c}{t})\)

因此答案为 \(\sum\operatorname{lcm}(c,t)\times\phi(\dfrac{a+b}{t})\),其中 \(t\)\(a+b\) 的因子。

时间复杂度为 \(O(n\log^{2}n)\)

代码

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <bits/stdc++.h>
using i64 = long long;

const int P = 1e9 + 7;

// assume -P <= x < 2P
int norm(int x) {
    if (x < 0) {
        x += P;
    }
    if (x >= P) {
        x -= P;
    }
    return x;
}
template<class T>
T power(T a, i64 b) {
    T res = 1;
    for (; b; b /= 2, a *= a) {
        if (b % 2) {
            res *= a;
        }
    }
    return res;
}
struct Z {
    int x;
    Z(int x = 0) : x(norm(x)) {}
    Z(i64 x) : x(norm(x % P)) {}
    int val() const {
        return x;
    }
    Z operator-() const {
        return Z(norm(P - x));
    }
    Z inv() const {
        assert(x != 0);
        return power(*this, P - 2);
    }
    Z &operator*=(const Z &rhs) {
        x = i64(x) * rhs.x % P;
        return *this;
    }
    Z &operator+=(const Z &rhs) {
        x = norm(x + rhs.x);
        return *this;
    }
    Z &operator-=(const Z &rhs) {
        x = norm(x - rhs.x);
        return *this;
    }
    Z &operator/=(const Z &rhs) {
        return *this *= rhs.inv();
    }
    friend Z operator*(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res *= rhs;
        return res;
    }
    friend Z operator+(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res += rhs;
        return res;
    }
    friend Z operator-(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res -= rhs;
        return res;
    }
    friend Z operator/(const Z &lhs, const Z &rhs) {
        Z res = lhs;
        res /= rhs;
        return res;
    }
    friend std::istream &operator>>(std::istream &is, Z &a) {
        i64 v;
        is >> v;
        a = Z(v);
        return is;
    }
    friend std::ostream &operator<<(std::ostream &os, const Z &a) {
        return os << a.val();
    }
};

int lcm(int a, int b) {
    return (i64)a * b / std::__gcd(a, b);
}

int main() {
    int n;
    std::cin >> n;

    std::vector<int> phi(n + 1);
    std::iota(phi.begin(), phi.end(), 0);
    for (int i = 1; i <= n; i++) {
        for (int j = 2 * i; j <= n; j += i) {
            phi[j] -= phi[i];
        }
    }

    Z res = 0;
    for (int t = 1; t <= n - 2; t++) {
        for (int s = t * 2; s <= n; s += t) {
            int c = n - s;
            res += lcm(c, t) * Z(phi[s / t]);
        }
    }
    std::cout << res << '\n';

    return 0;
}
回到页面顶部