介绍二分图
定义
二分图,又称二部图,英文名叫 Bipartite graph。
二分图是什么?节点由两个集合组成,且两个集合内部没有边的图。
换言之,存在一种方案,将节点划分成满足以上性质的两个集合。
性质
判定
如何判定一个图是不是二分图呢?
换言之,我们需要知道是否可以将图中的顶点分成两个满足条件的集合。
显然,直接枚举答案集合的话实在是太慢了,我们需要更高效的方法。
考虑上文提到的性质,我们可以使用 DFS 或者 BFS 来遍历这张图。如果发现了奇环,那么就不是二分图,否则是。
应用
染色法判定二分图
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57 | #include <bits/stdc++.h>
using namespace std;
const int N = 100010, M = 2 * N;
int n, m;
int h[N], e[M], ne[M], idx;
int color[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool dfs(int u, int c) {
color[u] = c;
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (!color[j]) {
if (!dfs(j, 3 - c))
return false;
} else if (color[j] == c)
return false;
}
return true;
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
while (m--) {
int a, b;
cin >> a >> b;
add(a, b), add(b, a);
}
bool flag = true;
for (int i = 1; i <= n; i++)
if (!color[i])
if (!dfs(i, 1)) {
flag = false;
break;
}
for (int i = 1; i <= n; i++)
printf("%d ", color[i]);
if (flag)
puts("Yes");
else
puts("No");
return 0;
}
|
匈牙利算法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 | #include <bits/stdc++.h>
using namespace std;
const int N = 510, M = 100010;
int n1, n2, m;
int h[N], e[M], ne[M], idx;
int match[N];
bool st[N];
void add(int a, int b) {
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool find(int x) {
for (int i = h[x]; i != -1; i = ne[i]) {
int j = e[i];
if (!st[j]) {
st[j] = true;
if (match[j] == 0 || find(match[j])) {
match[j] = x;
return true;
}
}
}
return false;
}
int main() {
cin >> n1 >> n2 >> m;
memset(h, -1, sizeof h);
while (m--) {
int a, b;
cin >> a >> b;
add(a, b);
}
int res = 0;
for (int i = 1; i <= n1; i++) {
memset(st, false, sizeof st);
if (find(i))
res++;
}
cout << res << endl;
return 0;
}
|