跳转至

欧拉函数基础

欧拉函数的定义

欧拉函数(Euler's totient function),即 \(\varphi(n)\),表示的是小于等于 \(n\)\(n\) 互质的数的个数。

比如说 \(\varphi(1) = 1\)

当 n 是质数的时候,显然有 \(\varphi(n) = n - 1\)


欧拉函数的性质

  • 欧拉函数是积性函数。

    积性是什么意思呢?如果有 \(\gcd(a, b) = 1\),那么 \(\varphi(a \times b) = \varphi(a) \times \varphi(b)\)

    特别地,当 \(n\) 是奇数时 \(\varphi(2n) = \varphi(n)\)

  • \(n = \sum_{d \mid n}{\varphi(d)}\)

    利用 莫比乌斯反演 相关知识可以得出。

    也可以这样考虑:如果 \(\gcd(k, n) = d\),那么 \(\gcd(\dfrac{k}{d},\dfrac{n}{d}) = 1, ( k < n )\)

    如果我们设 \(f(x)\) 表示 \(\gcd(k, n) = x\) 的数的个数,那么 \(n = \sum_{i = 1}^n{f(i)}\)

    根据上面的证明,我们发现,\(f(x) = \varphi(\dfrac{n}{x})\),从而 \(n = \sum_{d \mid n}\varphi(\dfrac{n}{d})\)。注意到约数 \(d\)\(\dfrac{n}{d}\) 具有对称性,所以上式化为 \(n = \sum_{d \mid n}\varphi(d)\)

  • \(n = p^k\),其中 \(p\) 是质数,那么 \(\varphi(n) = p^k - p^{k - 1}\)。 (根据定义可知)

  • 由唯一分解定理,设 \(n = \prod_{i=1}^{s}p_i^{k_i}\),其中 \(p_i\) 是质数,有 \(\varphi(n) = n \times \prod_{i = 1}^s{\dfrac{p_i - 1}{p_i}}\)

    证明:

    • 引理:设 \(p\) 为任意质数,那么 \(\varphi(p^k)=p^{k-1}\times(p-1)\)

      证明:显然对于从 1 到 \(p^k\) 的所有数中,除了 \(p^{k-1}\)\(p\) 的倍数以外其它数都与 \(p^k\) 互素,故 \(\varphi(p^k)=p^k-p^{k-1}=p^{k-1}\times(p-1)\),证毕。

    接下来我们证明 \(\varphi(n) = n \times \prod_{i = 1}^s{\dfrac{p_i - 1}{p_i}}\)。由唯一分解定理与 \(\varphi(x)\) 函数的积性

    \[ \begin{aligned} \varphi(n) &= \prod_{i=1}^{s} \varphi(p_i^{k_i}) \\ &= \prod_{i=1}^{s} (p_i-1)\times {p_i}^{k_i-1}\\ &=\prod_{i=1}^{s} {p_i}^{k_i} \times(1 - \frac{1}{p_i})\\ &=n~ \prod_{i=1}^{s} (1- \frac{1}{p_i}) \end{aligned} \]

求欧拉函数

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
int phi(int x) {
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0) {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

筛法求欧拉函数

\(1\)~\(N\)中与 \(N\) 互质的数的个数被称为欧拉函数,记为\(ϕ(N)\)

若在算数基本定理中,\(N=p_1^{α1}p_2^{α2}···p_k^{αk}\),则:

\(ϕ(N)=N∗\frac{p1−1}{p1}∗\frac{p2−1}{p2}∗…∗\frac{pk−1}{pk}\)

  • 质数i的欧拉函数即为phi[i] = i - 1
  • phi[primes[j] * i]分为两种情况:
    1. i % primes[j] == 0primes[j]i 的最小质因子,也是primes[j] * i的最小质因子,因此1 - 1 / primes[j]这一项在phi[i]中计算过了,只需将基数N修正为primes[j]倍,最终结果为phi[i] * primes[j]
    2. i % primes[j] != 0primes[j]不是 i 的质因子,只是primes[j] * i的最小质因子,因此不仅需要将基数N修正为primes[j]倍,还需要补上1 - 1 / primes[j]这一项,因此最终结果phi[i] * (primes[j] - 1)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
int primes[N], cnt;     // primes[]存储所有素数
int euler[N];           // 存储每个数的欧拉函数
bool st[N];         // st[x]存储x是否被筛掉

void get_eulers(int n) {
    euler[1] = 1;
    for (int i = 2; i <= n; i ++ ) {
        if (!st[i]) {
            primes[cnt ++ ] = i;
            euler[i] = i - 1;
        }
        for (int j = 0; primes[j] <= n / i; j ++ ) {
            int t = primes[j] * i;
            st[t] = true;
            if (i % primes[j] == 0) {
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
}
回到页面顶部